Cambridge Consultants Announces Completion of Pizzicato Software-Defined Radio Development

November 18 2016, 04:00
Following its reveal of Pizzicato, the world’s first all-digital radio transmitter, product design and development firm Cambridge Consultants has now added a digital receiver to create a complete Pizzicato radio system. It’s a glimpse into the future of wireless design: radios built purely from computing power. Pizzicato promises to vastly increase the range of wireless applications and to be a powerful enabler for both the ‘Internet of Things’ (IoT) and 5G technology.
 

One of the most powerful enablers behind the Internet of Things explosion, which Gartner predicts will reach more than 20 billion connected ‘things’ by 2020, will be innovation in radio technology. Currently, however, the cost, difficulty and inflexibility of designing traditional analogue radios into IoT chips means that IoT innovation is often restricted to software.
 
Product development and design firm Cambridge Consultants, announced that it has created the key to lower-cost IoT devices with its reveal of Pizzicato, complete all-digital radio built purely from computing power. First displayed at the Mobile World Congress 2015, in Barcelona, the project was explained in more detail in an article by Monty Barlow, Director of Wireless Technology, Cambridge Consultants, published in audioXpress, July 2015.
 
By moving analogue radios into the digital domain, they transcend the physical barriers of conventional analogue models and directly benefit from Moore’s Law – shrinking in size, cost and power consumption with each new generation. As a result, it enables truly flexible software-defined radios that are able to change frequency, bandwidth or radio standard in an instant, allowing a much more dynamic and ‘cognitive’ use of the radio spectrum at a much lower cost.

The Pizzicato platform enables truly flexible software-defined radios that are able to change frequency, bandwidth or radio standard in an instant, allowing a much more dynamic – or ‘cognitive’ – use of the radio spectrum.

Historically, a major barrier to creating all-digital radios was the inability to convert between analogue and digital at radio frequency, which demands sequential calculations at billions of times per second – a requirement that today’s silicon is simply incapable of performing. With Pizzicato, Cambridge Consultants has transformed the mathematics behind radio design, developing innovative algorithms that can perform 78 billion calculations per second on less than one square millimetre of today’s silicon. With computations running in parallel, the conversion between analogue and digital is updated in the time it takes light to travel just centimetres.

“We have a vision for radios to follow the same path as microprocessors, which have moved from expensive pieces of technology to increasingly capable and cheap devices that are installed in everyday products,” said Bryan Donoghue, digital systems group leader at Cambridge Consultants. “By moving radios into the digital domain, we’ve put them on a path to dramatic improvements in cost, size and performance - as predicted by Moore’s Law. This radical approach to making low-cost and highly flexible radios has huge potential for wireless innovation.”

One potential use for Pizzicato is in the emerging 5G mobile phone standard, which promises higher bandwidth and lower latency. New 5G networks will use ‘massive MIMO’ to efficiently reuse scarce radio spectrum and offer high data rates to even more mobile devices. But this ‘multiple-input and multiple-output’ method is a potentially costly approach, requiring huge arrays of radio transceivers. Pizzicato’s cheap and precise digital radios could dramatically change the economics of massive MIMO and help accelerate the deployment of 5G.

Pizzicato could also hold the key to lower-cost IoT devices and inject a new level of innovation into a market that has been predicted to reach 20 billion connected ‘things’ by 2020. The cost and difficulty of designing traditional analogue radios into IoT chips means that IoT innovation is often restricted to software. Pizzicato removes this barrier by allowing the digital radio to be copied between chip designs, just as microprocessors are today.

Cambridge Consultants has one of the world’s largest independent wireless development teams, with more than 140 experts working in areas ranging from ultra-low-power, short-range wireless connectivity to global satellite communication. During its 56-year history, the company has helped clients develop technology ranging from the world’s first wireless implanted pacing system to the ground-to-air radio system controlling air traffic over the majority of the planet.

Cambridge Consultants will be discussing its breakthrough Pizzicato technology at NIDays London, November 29, at the QEII Conference Centre, London, England.
www.altran.com | www.cambridgeconsultants.com
related items